
CSCI 1951-W Sublinear Algorithms for Big Data Fall 2020

Lecture 16: Introduction to Streaming Algorithms

Lecturer: Jasper Lee Scribe: Thomas Ottaway

1 Motivation

So far in the course we have been concerning ourselves with algorithms which have sublinear
time or query complexity. Now we are going to look at algorithms which are sublinear in
space. One common situation where we want to be able to have sublinear space complexity
is when data is coming from a (very long) stream, where we cannot afford to keep all the
data from the stream. Streams are of great interest both in theory and practice, since they
can be used to describe a wide range of situations such as information coming from a sensor
or the internet.

2 Problem Setting and Typical Runtimes

A typical model for a streaming algorithm is as follows: Consider some universe [n] and
some length-m stream input σ = (σ1, . . . ,σm) ∈ [n]m. Our goal is to compute some function
of this stream.

The order of these elements is not known to the algorithm and is often assumed to be
chosen in an adversarial manner. If we were allowed to assume some fixed ordering, or even
a random ordering, then many problems would become much simpler.

When developing streaming algorithms, we are allowed to look at the elements in order,
and after looking at each element, we are allowed to update some internal state. Algorithms
are typically judged based on the maximum size of this internal state with less memory usage
being better.

We call this the space complexity, s, of an algorithm, measured in bits. We want
all of our algorithms to be sublinear (i.e. s = o(min(n,m))). However, the holy grail is
for an algorithm to run in s = O(log n + logm) space. This is just enough memory to
store a constant number of stream elements (each one takes log2 n bits) and a constant
number of counters (where each of these counters could potentially go up to m which
would take log2m bits). Sometimes this is not possible, so in general we can settle for
s = polylog(n) + polylog(m).

Side Note: It is possible to keep a approximately correct counter using only log logm
space. One example is the Morris Counter. The basic idea is to store only the exponent of
the counter and then instead of incrementing the counter every time an event occurs you
increment it will probability equal to 1

2

c
where c is the current value of the counter. You

can read more about this on the Wikipedia page, or on various lecture note online.
We typically allow algorithms to take just a single pass through the stream. This require-

ment is natural in situations like sensor data where once you’ve looks at the measurement
and chosen not to store it, it is gone forever. However, there are interesting multi-pass
streaming algorithms in the literature, although out of the scope of this course.

1

https://en.wikipedia.org/wiki/Approximate_counting_algorithm

3 Majority Element

Problem statement: Suppose we know that a given stream contains some element k ∈ [n]
such that k appears in the stream > m

2 times. We want to determine the identity of k.

Algorithm 16.1

1. Initialize count to 0

2. Initialize Maj to Null

3. Repeat m times:

(a) Read new σi ∈ [n]

(b) If count = 0, set the Maj equal to σi and increment count

(c) If count > 0, if Maj = σi then increment count, otherwise decrement count

4. Return Maj

Note that the algorithm does not need to know n or m (as long as it has at least
log2(n) + log2(m) memory allocated).

Theorem 16.2 Algorithm 16.1, on input of length m stream over [n] with a majority
element, outputs this majority element. Furthermore, Algorithm 16.1 runs in Θ(log n +
logm) space, Θ(m) time.

Proof. Correctness: Let k be the majority element. Consider count’ which is defined as
being equal to count when Maj is k and equal to -count otherwise. Note that count’ always
increments when σi = k. Therefore, by the definition of majority element, count’ will be
positive at the end of the stream, meaning that Maj must be equal to k.

The complexity claims are proven by construction (Maj take log2 n bits to store, and
count take log2m bits to store).

4 Variant of streaming model

Often, the function of the stream does not depend on the stream order. Instead, it depends
only on the frequency vector.

f = (f1, . . . , fn) ∈ [m]n

Here, fi is the number of occurrences of element i ∈ [n].
For these problems, we can use a slightly different streaming model. In this new model,

every stream token contains a value i and a frequency c. Seeing the token (i, c) means to
“add c copies of element i,” or to update fi ← fi+c. Note that this means that it no longer
makes sense to talk about m being the total number of tokens. Instead, we analogously
assume that m is an upper bound to ||f ||1 =

!
i |fi|.

There are a number of different models which have different requirements on c.

• Cash Register Model : requires c > 0.

• Turnstile Model : no requirements.

• Strict Turnstile Model : no restrictions on c, but we are guaranteed that f > 0.

Note that Algorithm 16.1 can be easily adapted to work in the Cash Register Model.

2

5 Reservoir Sampling

Problem: Sample an element from a stream uniformly (in the original stream model). Here
we treat the stream as a multiset, so if i occurs twice it shows up twice as often. This would
be trivial if m were known before runtime, however, so we want to do this without knowing
m in advance.

This problem is also known as ℓ1-sampling since we are sampling i with probability |fi|
||f ||1 .

Algorithm 16.3

1. Initialize currentSample to be null

2. Repeat m times:

(a) Read new σi

(b) With probability 1
i assign currentSample to be σi otherwise do nothing.

Theorem 16.4 Algorithm 16.3 samples between the elements of the stream uniformly at
random with space complexity = O(log n+ logm) space.

Proof. We prove this by induction, claiming that after the kth iteration, the distribution of
currentSample is uniform over the elements [k] is uniform. The base case holds since in
the first iteration we select σ1 with probability 1. Now we show that if, at step k − 1, the
distribution was uniform over [k − 1], then the distribution at step k will be uniform over
[k].

Let currentSamplei be the value of currentSample after seeing the σi.

• P(currentSamplek = σk) is equal to σk is 1
k by the construction of Algorithm 16.3.

• If currentSamplek is not equal to σk then it must be equal to currentSamplek−1 by
the construction of our algorithm. Therefore, for any i ≤ k − 1 we know that:

P(currentSamplek = σi) =P(currentSamplek−1 = σi)

·P(currentSamplek was not replaced by σk)

Then by our inductive hypothesis and the construction of the algorithm we get that

P(currentSamplek = σi) =
1

k − 1

"
1− 1

k

#
=

1

k

Therefore, at every step k, currentSample is uniformly distributed over [k].
The space complexity bounds are clear from construction. We store one element at a

time which takes log2 n bits. We also need to store i, which ranges from 1 to m, which
means it will take O(logm) bits to store.

3

